
Data cleaning and feature engineering

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

The Pipeline

2
https://cloud.google.com/blog/topics/developers-practitioners/intro-data-science-google-cloud

https://cloud.google.com/blog/topics/developers-practitioners/intro-data-science-google-cloud

Understand your data

 Before you start training models, you should explore and visualize your data to gain

insights about what makes it predictive, which will help screen for potential issues,

standardize your data and inform feature engineering

1. If your data contains numerical/categorical features, it’s good to plot the histogram of

features to get a feel for the range of values taken and the frequency of different values

2. If your data includes location information, plot it on a map. Do any clear patterns emerge?

3. If your data includes images or natural language text, take a look at a few samples (and

their labels) directly

4. Are some samples missing values for some features? If so, you’ll need to deal with this

when you prepare the data

5. If your task is a classification problem, print the number of instances of each class in your

data. Are the classes roughly equally represented? If not, you will need to account for this

imbalance

3

https://www.kaggle.com/learn/geospatial-analysis

Prepare the data

 As you’ve learned before, models typically don’t ingest raw data

 Data preprocessing/preparation aims at making the raw data at hand more

amenable to model

 This includes handling missing values, vectorization/encoding, normalization

 Many preprocessing techniques are domain-specific (for example, specific to text data or

image data)

 We will also have different treatments for features and labels

4

Data cleaning

 Data cleaning is a key part of data science, but it can be deeply frustrating.

 What should you do about those missing values?

 Why are some of your text fields garbled?

 Why aren’t your strings/dates formatted correctly?

 How can you quickly clean up inconsistent/duplicated data entry?

 The importance of cleaning data

1. Ease of use and reuse: When data is properly organized and normalized it’s easier to

search, use, and share with others

2. Consistency: Data science often requires working with more than one dataset, where

datasets from different sources need to be joined together. Making sure that each

individual data set has common standardization will ensure that the data is still useful

when they are all merged into one dataset

3. Model accuracy/interpretability: Data that has been cleaned improves the models

5

1. Handling missing values - Figure out why the data is missing

 For dealing with missing values, you'll need to use your intuition to figure out

why the value is missing

 Is this value missing because it wasn't recorded (missing at random) or it doesn't exist? If a

value is missing because it doesn't exist (like the height of the child of someone who

doesn't have any children) then it doesn't make sense to try and guess what it might be.

These values you probably do want to keep as `NaN`

 If a value is missing because it wasn't recorded, then you can try to guess what it might

have been based on the other values in that column and row. This is called imputation

 For example, if we form a matrix of the ratings (on a scale from 1 to 5) that 𝑛 customers have

given to the entire Netflix catalog of 𝑝 movies, then most of the matrix will be missing, since no

customer will have seen and rated more than a tiny fraction of the catalog

 If we can impute the missing values well, then we will have an idea of what each customer will

think of movies they have not yet seen

6

Handling missing values - Dropping or simple filling

 One option is to drop it

 If you're in a hurry or don't have a reason to figure out why your values are missing, one

option you have is to just remove any rows or columns that contain missing values

 However, this comes at the price of losing data that may be valuable (even incomplete)

 You could set a threshold to retain more data

 You can also keep it as it is, but you should fill it with a value

 Using something like -9999, which is a value out of the normal range and feeds it into an

ensemble model or random forest

 If the feature is categorical, it’s safe to create a new category which means “the value is

missing.” The model will automatically learn what this implies with respect to the targets

 Another option is to try and fill it with logical order

 You could use the entry below or the previous entry to fill in the value

 This makes sense for datasets where the observations have some logical order to them
7

Handling missing values - Imputation

 A better strategy is to impute the missing values, i.e., to infer them from the

known part of the data

 One type of imputation algorithm is univariate, which imputes values in the 𝑖-th feature

dimension using only non-missing values in that feature dimension

 By contrast, multivariate imputation algorithms use the entire set of available feature

dimensions to estimate the missing values

 If 𝑥𝑖𝑗 is missing, then we could replace it with the mean of the 𝑗th column

(using the non-missing entries to compute the mean)

 You could also fill it with other representative values like the median

 Categorical variable can be filled with the most frequent value or treated as a separate level

 Although this is a common and convenient strategy, often we can do better by exploiting

the correlation between the variables

8

Handling missing values - Nearest neighbor strategy

 The KNN approach provides imputation for filling in missing values using the

k-Nearest Neighbors approach

 By default, a nan Euclidean distance metric is used to find the nearest neighbors

 Each missing feature is imputed using values from 𝑛 nearest observations that have a value

for the feature. The feature of the neighbors are averaged uniformly or weighted by

distance to each neighbor

9

NA

NA

NA

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.nan_euclidean_distances.html

Handling missing values - Iterative strategy

 It does so in an iterated round-robin fashion: at each step, a feature column is

designated as output 𝑦 and the other feature columns are treated as inputs 𝑋
 The row contains valid value are treated as training data while the row with missing value

are treated as target

 A regressor is fit on (𝑋, 𝑦) for known 𝑦. Then, the regressor is used to predict the missing

values of 𝑦. This is done for each feature in an iterative fashion, and then is repeated for a

fix number of imputation rounds. The results of the final imputation round are returned

 You can pass different regressors for predicting missing feature values

10

Handling missing values - Matrix completion

 We can assume that the first 𝑀 principal component score and loading vectors

provide the “best” approximation to the data matrix 𝑋

 Now, some of the observations 𝑥𝑖𝑗 are missing. One can both impute the

missing values and solve the principal component problem at the same time

min
𝐴∈𝑅𝑛×𝑀, 𝐵∈𝑅𝑝×𝑀

{

(𝑖,𝑗)∈𝑂

(𝑥𝑖𝑗 −

𝑚=1

𝑀

𝑎𝑖𝑚𝑏𝑗𝑚)
2}

where 𝑂 is the set of all observed pairs of indices (𝑖, 𝑗), a subset of the possible 𝑛 ×
𝑝 pairs

 We can estimate a missing observation 𝑥𝑖𝑗 using 𝑥𝑖𝑗 = σ𝑚=1
𝑀 ො𝑎𝑖𝑚 𝑏𝑗𝑚

 We can (approximately) recover the 𝑀 principal component scores and loadings, as we did

when the data were complete

11

https://www.youtube.com/watch?v=e4-xrR4MKUU

12

2. Duplicate entry

 In addition to missing data, you will often encounter duplicated data in real-

world datasets. Fortunately, many packages provide an easy means of detecting

and removing duplicate entries

 You can identify duplicates and drop them using pandas

 Duplicate data can change the results of your analyses and give you inaccurate

results (effective sample size is affected) and waste resources!

13

letters numbers

A 1

B 2

A 1

B 3

B 3

Inconsistent entry

 Data can have inconsistencies in how it’s presented

 Common formatting problems involve resolving whitespace, dates, inconsistent names and

data types. For instance, you can check for typos or inconsistent capitalization. This is

mostly a concern for categorical features!

 Resolving formatting issues is typically up to the people who are using the data. For

example, standards on how dates and numbers are presented can differ by country

 Fuzzy matching is the process of automatically finding text strings that are

very similar to the target string

 In general, a string is considered "closer" to another one the fewer characters you'd need to

change if you were transforming one string into another

 So "apple" and "snapple" are two changes away from each other (add "s" and "n") while

"in" and "on" are one change away (replace "i" with "o")

 Regex also helps, see here for more information

14

https://realpython.com/python-data-cleaning-numpy-pandas/#combining-str-methods-with-numpy-to-clean-columns
https://www.kaggle.com/code/alexisbcook/parsing-dates
https://en.wikipedia.org/wiki/Approximate_string_matching
https://www.dataquest.io/blog/regular-expressions-data-scientists/

Character encoding

 Character encodings are specific sets of rules for mapping from raw binary

byte strings (that look like this: 0110100001101001) to characters that make up

human-readable text (like "hi")

 If you tried to read text with a different encoding than the one it was originally written in,

you ended up with scrambled text or with "unknown" characters. There are what gets

printed when there's no mapping between a particular byte and a character in the encoding

you're using to read your byte string in

 Notepad++ and other editors are useful in this case

 Character encoding mismatches are less common today than they used to be, but it's

definitely still a problem. There are lots of different character encodings, but the main one

you need to know is UTF-8

 UTF-8 is the standard text encoding. All Python code is in UTF-8 and, ideally, all your data

should be as well. It's when things aren't in UTF-8 that you run into trouble

15

https://notepad-plus-plus.org/

3. Scaling of the variables matters

 An eclectic online retailer sells two items: socks and computers, the same

scaling might be undesirable, since

 Computers are more expensive than socks and so the online retailer may be more interested

in encouraging shoppers to buy computers than socks, and a large difference in the number

of socks purchased by two shoppers may be less informative about the shoppers’ overall

shopping preferences than a small difference in the number of computers purchased

16

Scaling and standardization

 In both cases, you're transforming the values of numeric variables:

 Min-max scaling means that you're transforming your data so that it fits within a specific

scale, like 0-100 or 0-1. To scale between [𝑎, 𝑏]

𝑥 = 𝑎 +
(𝑥 − 𝑥𝑚𝑖𝑛)(𝑏 − 𝑎)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 Use standardization if you want to center the data around 0 and be less affected by outliers

𝑥𝑖𝑗 =
𝑥𝑖𝑗 − ҧ𝑥𝑗

1
𝑛
σ𝑖=1
𝑛 (𝑥𝑖𝑗 − ҧ𝑥𝑗)

2

17

Nonlinear transform

 There are also other non-linear transformation

 You may want to use a logarithm transform for the Income data to reduce the influence of

extreme values

 You may want to discretize continuous features to improve SNR or reduce dimension

 Some models may assume your data is normally distributed. Such as linear

discriminant analysis (LDA) or Gaussian naive Bayes

 Power transforms are a family of parametric, monotonic transformations that aim to map

data from any distribution to as close to a Gaussian distribution as possible

 Box-cox (applied to strictly positive data) and Yeo-Jonson transform

 Quantile transform provides a non-parametric transformation to map the data to a uniform

distribution with values between 0 and 1 or a Gaussian distribution

18

https://scikit-learn.org/stable/modules/preprocessing.html#non-linear-transformation
https://developers.google.com/machine-learning/data-prep/transform/bucketing
https://datascience.stackexchange.com/questions/19782/what-is-the-rationale-for-discretization-of-continuous-features-and-when-should

4. Encoding categorical variable – One hot encoding

 Categorical data can be extremely useful. However, in its original form, it is

unrecognizable to most models. We can use different “encoding” techniques

 One hot encoding convert it to dummy variables by produces one feature per category

 In linear and logistic regression, one hot encoding causes problems with multicollinearity. In such

cases, one dummy is omitted (its value can be inferred from the other values)

 The number of categorical features should be small so that it can be effectively applied

19

Animal Target isCat isDog isHamster

Cat 1 1 0 0

Hamster 0 0 0 1

Cat 0 1 0 0

Dog 1 0 1 0

Hamster 0 0 0 1

Cat 1 1 0 0

Dog 0 0 1 0

Encoding categorical variable – Label encoding

 Ordinal encoding or label encoding will transform each categorical feature to

one new feature of integers (0 to number of features-1)

 This coding suggests an ordering. Furthermore, it implies that the difference between cat

and dog is the same as between dog and hamster

20

Animal Target Animal_encoded

Cat 1 0

Hamster 0 2

Cat 0 0

Dog 1 1

Hamster 0 2

Cat 1 0

Dog 0 1

Encoding categorical variable – Target encoding

 Target encoding or mean encoding will replace a feature's categories with some

number derived from the target

 Group the data by each category and count the number of occurrences of each target.

Calculate the average of the target given each specific category and add it to a new column

 A target encoding derives numbers for the categories using the feature's most important

property: its relationship with the target

21

Animal Target Animal_encoded

Cat 1 0.67

Hamster 0 0.50

Cat 0 0.67

Dog 0 0.00

Hamster 1 0.50

Cat 1 0.67

Dog 0 0.00

Encoding categorical variable – Target encoding

 When a category only occurs a few times in the dataset, any statistics

calculated on its group are unlikely to be very accurate and may leak the target

 To avoid target leak and overfitting, target encoding need to be trained on an independent

"encoding" split. You can use cross-validation in practice

22 https://medium.com/@pouryaayria/k-fold-target-encoding-dfe9a594874b

https://axk51013.medium.com/kaggle-categorical-encoding-3%E5%A4%A7%E7%B5%95%E6%8B%9B-589780119470
https://medium.com/@pouryaayria/k-fold-target-encoding-dfe9a594874b

Encoding categorical variable – Target encoding

23

 Another solution to these problems is to add smoothing.

The idea is to blend the in-category average with

the overall average. Rare categories get less weight on

their category average and missing categories just get the

overall average
𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔
= 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑖𝑛_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 + (1 − 𝑤𝑒𝑖𝑔ℎ𝑡) × 𝑜𝑣𝑒𝑟𝑎𝑙𝑙

 An easy way to determine the value for weight is to

compute an m-estimate:
𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑛 / (𝑛 + 𝑚)

where 𝑛 is the total number of times that category occurs in the

data. The parameter 𝑚 determines the "smoothing factor".

Larger values of 𝑚 put more weight on the overall estimate

5. What is Feature engineering?

 One of the most important steps on the way to building a great machine

learning model is feature engineering. You might perform it to:

 Improve a model's predictive performance

 Reduce computational or data needs

 Improve interpretability of the results

 The goal of feature engineering is simply to make your data better suited to the

problem at hand

 Consider "apparent temperature" measures like the heat index and the wind chill. These

quantities attempt to measure the perceived temperature to humans based on air

temperature, humidity, and wind speed, things which we can measure directly

 You could think of an apparent temperature as the result of a kind of feature engineering,

an attempt to make the observed data more relevant to what we actually care about: how it

actually feels outside!

24

What is Feature engineering?

 For a feature to be useful, it must have a relationship to the target that your

model is able to learn

25

 Linear models, for instance, are able to learn linear

relationships. So, when using a linear model, your

goal is to transform the features to make their

relationship to the target linear

 Say you were trying to predict the Price of square

plots of land from the Length of one side. Fitting a

linear model directly to Length gives poor results: the

relationship is not linear

 If we square the Length feature to get 'Area', however,

we create a linear relationship. Adding Area to the

feature set means this linear model can now fit a

parabola. Squaring a feature, in other words, gave the

linear model the ability to fit squared features

Feature engineering

 A great first step is to construct a ranking with a feature utility metric, a

function measuring associations between a feature and the target

 Then you can choose a smaller set of the most useful features to develop initially and have

more confidence that your time will be well spent

 We will cover feature selection in next lecture

 Once you've identified a set of features with some potential, it's time to start

developing them. Some tips are below

 Understand the features. Refer to your dataset's data documentation, if available

 Research the problem domain to acquire domain knowledge. If your problem is predicting

house prices, do some research on real-estate for instance. Wikipedia/ChatGPT can be a

good starting point, but books and journal articles will often have the best information

 Study previous work. Solution write-ups from past Kaggle competitions are a great

resource

26

https://www.slideshare.net/HJvanVeen/feature-engineering-72376750
https://www.kaggle.com/code/sudalairajkumar/winning-solutions-of-kaggle-competitions/notebook

Tips on discovering/creating new features

 Use data visualization. Visualization can reveal pathologies in the distribution

of a feature or complicated relationships that could be simplified. Be sure to

visualize your dataset as you work through the feature engineering process

 You can identify promising transform by Exploratory Data Analysis (EDA)

 Typical transformation

 Interaction between features

 You can apply arithmetic operations to columns (Ratio, Log, Square…)

 You can compute statistics for each row like the number of missing value, number of zeros, mean,

max, min…

27

Tips on discovering/creating new features

 It's good to keep in mind your model's own strengths and weaknesses when

creating features. Here are some guidelines:

1. Linear models learn sums and differences naturally, but can't learn more complex

2. Ratios seem to be difficult for most models to learn. Ratio combinations often lead to

some easy performance gains

3. Linear models and neural nets generally do better with normalized features. Neural nets

especially need features scaled to values not too far from 0. Tree-based models (like

random forests and XGBoost) are usually much less so

4. Tree models can learn to approximate almost any combination of features, but when a

combination is especially important they can still benefit from having it explicitly created,

especially when data is limited

5. Counts are especially helpful for tree models since these models don't have a natural way

of aggregating information across many features at once

28

https://www.kaggle.com/code/ryanholbrook/creating-features

6. Improving your dataset (labels)

 cleanlab automatically finds and fixes label issues in your ML datasets

 It can reduce manual work needed to fix data errors and helps train reliable ML models on

noisy real-world datasets

 The key idea is confidence learning and rank pruning

29

https://labelerrors.com/

https://docs.cleanlab.ai/stable/index.html
https://arxiv.org/abs/1911.00068
https://arxiv.org/abs/1705.01936
https://labelerrors.com/

Confidence learning

 Confident learning (CL) has emerged as a subfield within supervised learning

and weak-supervision to

 Characterize label noise

 Find label errors

 Learn with noisy labels

30

 It can directly estimates the

joint distribution of noisy and

true labels and and ranking

examples to train with

confidence

https://dcai.csail.mit.edu/lectures/label-errors/

Conclusion

 It’s pretty bad practice to treat a dataset as a black box. Before you start

training models, you should explore and visualize your data to gain insights

about what makes it predictive

 We can then screen for potential issues and perform data cleaning

 This will also inform and discover useful feature engineering

31

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd

Edition Chapter 1

[2] https://madewithml.com/courses/mlops/preprocessing/

[3] https://github.com/microsoft/Data-Science-For-Beginners/blob/main/2-

Working-With-Data/08-data-preparation/README.md

[4] https://www.kaggle.com/learn/feature-engineering

[5] https://www.kaggle.com/learn/data-cleaning

[6] An Introduction to Statistical Learning, second edition

32

https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
https://madewithml.com/courses/mlops/preprocessing/
https://github.com/microsoft/Data-Science-For-Beginners/blob/main/2-Working-With-Data/08-data-preparation/README.md
https://www.kaggle.com/learn/feature-engineering
https://www.kaggle.com/learn/data-cleaning
https://www.statlearning.com/

Appendix

33

Resources and libraries

 Data cleaning

 https://realpython.com/python-data-cleaning-numpy-pandas/ (str, applymap)

 Cleanlab

 Exploratory data analysis

 https://github.com/microsoft/Data-Science-For-Beginners/blob/main/3-Data-

Visualization/README.md

 pandas-profiling , dataprep, Lux, dtale

 Data imputation

 https://scikit-learn.org/stable/modules/impute.html

 Fancyimpute

34

https://realpython.com/python-data-cleaning-numpy-pandas/
https://github.com/cleanlab/cleanlab
https://www.kaggle.com/learn/data-visualization
https://github.com/ydataai/ydata-profiling
https://github.com/sfu-db/dataprep
https://github.com/lux-org/lux
https://github.com/man-group/dtale
https://scikit-learn.org/stable/modules/impute.html
https://github.com/iskandr/fancyimpute

Resources and libraries

 Data standardization and validating

 dataprep

 Great expectation

 Categorical encoding

 Category encoders

 Dirty Cat

 Flexible or automatic feature engineering

 https://scikit-learn.org/stable/modules/preprocessing.html

 Feature engine

 Feature tools

35

https://github.com/great-expectations/great_expectations
https://github.com/great-expectations/great_expectations
https://github.com/scikit-learn-contrib/category_encoders
https://github.com/dirty-cat/dirty_cat
https://github.com/feature-engine/feature_engine
https://github.com/feature-engine/feature_engine
https://github.com/alteryx/featuretools

Resources and libraries

 Imbalance data

 https://developers.google.com/machine-learning/data-prep/construct/sampling-

splitting/imbalanced-data

 imbalanced-learn

 Outlier and Anomaly

 https://github.com/EthicalML/awesome-production-machine-learning#outlier-and-

anomaly-detection

 https://scikit-learn.org/stable/modules/outlier_detection.html

 Features engineering for images/natural language

 https://scikit-learn.org/stable/modules/feature_extraction.html#image-feature-extraction

 https://docs.opencv.org/4.x/db/d27/tutorial_py_table_of_contents_feature2d.html

 https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction

36

https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data
https://github.com/scikit-learn-contrib/imbalanced-learn
https://github.com/EthicalML/awesome-production-machine-learning#outlier-and-anomaly-detection
https://scikit-learn.org/stable/modules/outlier_detection.html
https://scikit-learn.org/stable/modules/feature_extraction.html#image-feature-extraction
https://docs.opencv.org/4.x/db/d27/tutorial_py_table_of_contents_feature2d.html
https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction

Data cleaning for text and image dataset

 Text (NLP)

 Noise removal

 Tokenization

 Normalization

 Stopwords removal

 Stemming/Lemmatization

 Vectorization

 Image /video (computer vision)

 Resize image

 Remove noise

 Segmentation

 Morphology
37

https://www.linkedin.com/posts/shivan-kumar_datascience-machinelearning-deeplearning-activity-6732600618751442944-kNRY/

Exploratory Data Analysis (EDA) and Data Mining

 The field of exploratory data analysis was established with

Tukey’s 1977 now-classic book Exploratory Data

Analysis [Tukey-1977]. Tukey presented simple plots (e.g.,

boxplots, scatterplots) that, along with summary statistics

(mean, median, quantiles, etc.), help paint a picture of a

data set.

 It is important to understand what you can do before you learn to

measure how well you seem to have done it

 Allow the data to speak for themselves before standard

assumptions or formal modeling

 The greatest value of a picture is when it forces us to notice what

we never expected to see

38

https://en.wikipedia.org/wiki/John_Tukey

https://en.wikipedia.org/wiki/John_Tukey

Visualization

 Seaborn combines simple statistical fits with plotting on pandas dataframes

 Multiple plot - joinplot and pairplot

 Regression plot – lmplot, regplot and residplot

 Matrix plot – heatmap and clusterplot

39

figure-level function

axes-level function

https://seaborn.pydata.org/introduction.html

Wage data

 Dataset from https://www.statlearning.com/

 Scatterplot and Boxplot

40

https://www.statlearning.com/

Stock Market data

 Boxplot and heatmap

41

Gene Expression Data

 Scatterplot

42

Auto data

 Pairplot, joinplot and displot

43

Bikeshare Data

 line plot

44

Multiple imputation

 It is common practice to perform multiple imputations, generating, for example,

𝑚 separate imputations for a single feature matrix

 Each of these 𝑚 imputations is then put through the subsequent analysis pipeline (e.g.

feature engineering, clustering, regression, classification). The 𝑚 final analysis results (e.g.

held-out validation errors) allow the data scientist to obtain understanding of how analytic

results may differ as a consequence of the inherent uncertainty caused by the missing

values. The above practice is called multiple imputation

 It is still an open problem as to how useful single vs. multiple imputation is in

the context of prediction and classification when the user is not interested in

measuring uncertainty due to missing values

45

Validate your data

 Get Rid of Extra Spaces

 One of the first things you want to do is remove extra spaces . Take care! Some space can

carry information, but it heavily depends on the situation. For example, in "Complete

Name": "Andrea Carli" in nice to have space so we can later split this into "Name":

"Andrea" and "Surname": "Carli".

 In general, apart from recommending and suggesting customization systems, unique

identifiers like names or IDs are something you can generally drop. Often, they do not

carry information

 Spell Check/ Grammar Check

 You want to correct wrong words, for the sake of evenness

 This is also useful when you are dealing with text data

 Grammar check of text data can be of great importance depending on the NLP task you are

about to perform with them

46

https://stackoverflow.com/questions/43332057/pandas-strip-white-space

Value normalization in deep learning

 In general, it isn’t safe to feed into a neural network data that takes relatively

large values or data that is heterogeneous (for example, data where one feature

is in the range 0–1 and another is in the range 100–200). Doing so can trigger

large gradient updates that will prevent the network from converging. To make

learning easier for your network, your data should have the following

characteristics:

 Take small values—Typically, most values should be in the 0–1 range

 Be homogenous—All features should take values in roughly the same range

 Additionally, the following stricter normalization practice is common and can

help, although it isn’t always necessary :

 Normalize each feature independently to have a mean of 0

 Normalize each feature independently to have a standard deviation of 1

47

Value normalization in deep learning

 In the MNIST classification, we started with image data encoded as integers in

the 0–255 range, encoding grayscale values. Before we fed this data into our

network, we had to cast it to float32 and divide by 255 so we’d end up with

floating-point values in the 0–1 range

 Similarly, in regression problem, we started with features that took a variety of

ranges—some features had small floating point values, and others had fairly

large integer values. Before we fed this data into our network, we had to

normalize each feature independently so that it had a standard deviation of 1

and a mean of 0

48

